Tag Archive for: post-concussion syndrome

Gait Testing Can Predict Future Post Concussion Syndrome

A recent study in the journal Gait and Posture looked at various biomarkers in posture and walking in athletes who suffered a #concussion.⁣

⁣Prognosis for Persistent Post Concussion Symptoms using a Multifaceted Objective Gait and Balance Assessment Approach


They wanted to see if any specific findings on balance or gait testing could predict which patients would have a worse recovery.⁣

The study found that out of all of the balance and walking parameters, 2 metrics were associated with the development of persistent symptoms or #postconcussionsyndrome


𝗗𝘂𝗮𝗹 𝗧𝗮𝘀𝗸 𝗮𝗻𝗱 𝗚𝗮𝗶𝘁⁣
The study found that when concussion patients had to perform a cognitive task while walking, there were changes in their walk that predicted future symptoms.⁣

Patients that were more likely to have future symptoms showed 𝙞𝙣𝙘𝙧𝙚𝙖𝙨𝙚𝙙 𝙢𝙤𝙫𝙚𝙢𝙚𝙣𝙩 𝙤𝙛 𝙩𝙝𝙚𝙞𝙧 𝙡𝙤𝙬𝙚𝙧 𝙗𝙖𝙘𝙠 when walking, and also 𝘀𝗵𝗼𝘄𝗲𝗱 𝗺𝗼𝗿𝗲 𝗿𝗮𝗻𝗱𝗼𝗺 𝗳𝗼𝗼𝘁 𝗽𝗹𝗮𝗰𝗲𝗺𝗲𝗻𝘁 when landing when they were engaged in a cognitive task.⁣

This might not seem like a big deal, but this may be a subtle sign that the brain is struggling to compartmentalize basic movement patterns, so it is using important resources from the frontal lobe to do something as simple as walking straight.⁣

This is why we have all of our patients perform a walking test with and without a cognitive challenge.⁣

The dual task paradigm gives us insight into brain function, and it also lets us know if we can use dual task exercises like the Fitlight to enhance our rehab.⁣

#neuroscience#neuroplasticity#tbi

Concussion and Eye Movement Series Part 2: Smooth Pursuits

Smooth pursuit eye movements are the ones we use to follow a moving object without moving our heads.

We take it for granted how simple this is, but this eye movement requires the coordination of several brain regions including the parietal lobe, temporal lobe, cerebellum, and multiple brain stem nuclei.

Image result for smooth pursuits neural substrates

Here’s a ridiculously complex graphic about the brain regions involved in smooth pursuits. It’s insane what goes on in the brain to accomplish such a seemingly simple task. A concussion can disrupt any part of this pathway, or multiple parts depending on the nature of the injury.

It requires us to:

  • Predict an object’s velocity – Correct for quick changes in direction
  • Maintain focus and attention
  • Ignore new and interesting background stimuli

After we hit our heads, any one of these areas can be affected which means different elements of smooth pursuit can become compromised.

Brain injuries can cause our pursuits to become slow, get pulled off target, delay reaction time, or even ignore parts of your visual field.

This can cause problems for athletes who need elite visual tracking abilities like baseball players, wide receivers, and hockey players. But some important notes:

  • Smooth pursuit deficits can be completely asymptomtic
  • Having poor pursuits isn’t useful diagnostically because many problems including aging can cause bad pursuits
  • Smooth pursuit testing needs to be taken on the context of other exam findings to localize the problem in the brain and determine the best method of rehabilitation

While it doesn’t tell us much diagnostically, it can be used as a metric to see how well your brain is responding to #neurorehabilitation.

Dysautonomia – A possible cause of post-concussion syndrome

Dysautonomia and PCS

With concussion being a dominant topic in sports medicine, we have seen a large spike in research dollars being spent to study the effects of brain injury. Despite our increased knowledge, when someone has concussion symptoms for longer than 30 days, there still isn’t great consensus as to why these people develop persistent symptoms and what is causing it to happen.

The symptoms of post-concussion syndrome (PCS) are what make the illness difficult to understand. The primary symptoms of PCS include:

  • Persistent headache
  • Dizziness
  • Loss of balance
  • Difficulty with concentration/brain fog
  • Nausea
  • Impaired or slow cognitive activity

The symptoms are vague and non-specific. In medicine, there’s a tendency and a desire to have a condition be linked to one very specific piece of anatomy. That way you can treat the diseased organ and cure the illness.

The reality is that a head injury is likely disrupting multiple body parts simultaneously. The higher centers of the brain aren’t the only things that get scrambled during a concussion. A concussion is likely damaging multiple areas in the brain along with the inner ear organs, the neck, the jaw, and the eyes.

Since every head injury is unique in terms of velocity, direction, and magnitude, it means that each person’s head injury is likely to impact their anatomy in individual ways. This is where you can have a lot of variation in how someone with post-concussion syndrome looks symptomatically.

Another struggle is that different body parts can create similar symptoms. An injury to the neck can cause a feeling of vertigo just like an injury to an inner ear organ. An injury to the neck can also cause headaches symptoms just like the eyes or the vessels in the brain.

Some doctors are looking at another potential cause of persistent concussive symptoms called dysautonomia.

Dysautonomia – A Fight Between 2 Super Systems

Dysautonomia is a condition where the brain loses normal control of the internal organ systems of your body. Dysautonomia can show up in organs like the digestive system, bladder, glands, and pupils. Classically, these disorders show up in the cardiovascular system by affecting your heart rate and blood pressure.

Autonomic Nerveous System Chart

The autonomic nervous system is compromised in patients with dysautonomia

The most common disorders linked to dysautonomia are:

  • Multiple sclerosis
  • Fibromyalgia
  • Postural Orthostatic Tachycardia Syndrome (POTS) – an illness characterized by rapid heart beat to 150-200 bpm at rest
  • Neurocardiogenic syncope – a disorder characterized by unpredictable fainting attacks.

When people have these disorders then the broken function of the nervous system causes people to feel dizzy, in a fog, extremely fatigued, light headed, and anxious. When you read those symptoms on paper (or screen) it doesn’t sound like much, but the way those symptoms persist can drive someone mad.

People don’t just have a brain fog, they are scared and frustrated that their brain won’t allow them to focus and accomplish a task.

People don’t just have fatigue, they have an inability to socialize and be effective at work and at home because of exhaustion.

People don’t just have dizziness, they are worried about driving and being in open spaces because their body is betraying them.

People don’t just have a rapid heart beat, they have fear and anxiety that this next attack could put them in the emergency room.

Having dysautonomia whether it’s an illness on it’s own like POTS, or part of another illness like MS can make life much harder and depressing, because treatment for the illness is really limited.

Post-Concussion Syndrome and Dysautonomia

Going back to post-concussion syndrome, we discussed how the illness can be extremely frustrating because doctors and scientists have had a hard time coming to a consensus as to where the symptoms are coming from.

Some doctors and scientists are presenting an interesting theory that cases of post-concussion syndrome may be a manifestation of dysautonomia.

One of the first studies to look at this phenomenon was done in 2016 on young patients with persistent concussion symptoms. The study involved a test called the head-upright table tilt test. You can check out the full study here:

Orthostatic intolerance and autonomic dysfunction in youth with persistent postconcussive symptoms: a head-upright table tilt study

Image credit to Stickman Communications

Image credit to Stickman Communications

This test is used to diagnose feinting conditions but is also a hallmark test for POTS. The study showed that 24 out of 34 PCS patients had findings on the test indicating a form of dysautonomia. 10 Patients had syncope while 14 patients had POTS.

Even more interesting was that when the patients with POTS stopped having PCS symptoms, they also stopped having a reaction to the table tilt test when re-examined.

Another 2016 study showed that patients who have a history of concussion show a decreased ability to modulate their heart rate and blood pressure at rest indicating a loss of autonomic control. This was happening in patients without any overt signs or symptoms of dysautonomia.

Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury

Then you also have a wide range of studies looking at how concussion can impact your heart rate variability which is an increasingly utilized biomarker for autonomic nervous system activity.

HRV Studies

A dysautonomic theory of post-concussion syndrome can also help explain some of the unusual symptoms that may arise after a head injury. While it’s easy to understand how a PCS patient can have persistent headache and dizziness, there are a lot of people who will have a concussion or whiplash and start developing persistent gut issues and sensitivities to foods. Dysautonomia as a culprit helps to make better sense of this phenomenon.

What Does This Mean for Treatment?

Dysautonomia is a condition that is not well recognized by many physicians and there aren’t many choices for effective treatment options. In dysautonomia, the brain is having a terribly hard time making sense of its environment.

There’s some interesting work going on utilizing balance and vestibular exercises and graded cardiovascular exercise to help the brain recover from injury, but I’ll cover that on another day. Today I want to talk about the veins in your neck.

Dr. Michael Arata is an interventional radiology specialist in Southern California. I heard him speak at a conference in 2015 where he talked about the effect that the veins in your neck could have on your autonomic nervous system. It’s been an interesting and controversial theory that has been tied to illnesses like multiple sclerosis where dysautonomia is a hallmark of the illness. When the large veins in the neck become narrowed or occluded, it can cause abnormal fluid movement in the brain leading to venous reflux, congestion, and neuroinflammation in the brain.

Dr. Arata even published 2 studies that demonstrating that a procedure that uses a balloon to open these veins was able to create changes in the autonomic function of patients with multiple sclerosis including heart rate variability and blood pressure control.

Transvascular autonomic modulation: a modified balloon angioplasty technique for the treatment of autonomic dysfunction in multiple sclerosis patients.

Blood pressure normalization post-jugular venous balloon angioplasty

But that wasn’t the most interesting part of his presentation. During his talk, he talked about the concept of the atlas vertebra creating compression on these vascular structures. He even used an imaging technique called a venogram to show this happening in his patients:

Dr. Arata shows images of a venagram to show how atlas rotation can disrupt the internal jugular vein

Dr. Arata shows images of a venagram to show how atlas rotation can disrupt the internal jugular vein

It’s because of this phenomenon that Dr. Arata actually refers some of his patients for upper cervical correction so that they can influence this part of the autonomic nervous system.

If dysautonomia is a primary symptom generator in PCS patients, then the impact from a potential neurovascular insult like an craniocervical displacement should be considered especially considering the mechanism of injury includes a blunt force to the head.

An Personalized Approach to Post-Concussion Syndrome

Patients with post-concussion syndrome with signs of dysautonomia likely have multiple systems that must be addressed to regain normal functionality. In addition to dysfunction in multiple systems is the idea that each person will have a varying tolerance to different therapies.

In truth, no single therapy is likely to fix someone with persistent post-concussive symptoms and dysautonomia. These patients need to improve their tolerance to exercise with gradual increased load (especially if they’re an athlete). They also need vestibular rehabilitation so that their brain can move the head and eyes normally again. There’s no disputing the necessity and usefulness of those treatment strategies.

However, if we are concerned about the chronic effects of head injury and the ability to improve fluid movement through the brain, then we have to consider the impact that trauma has on the structural alignment of the neck and the neuroinflammatory consequences that these injuries can leave behind.

Send Dr. Chung a Question