I’ve been doing a lot of reading lately about the vagus nerve and the autonomic nervous system. We’ve been super fortunate to work with a handful of patients with POTS in the past 6 months with some really great and surprising results from taking a cervical and vestibular approach to care, and it’s driven me to learn more about this unconscious super system in the body.
While dysautonomia is considered a rare problem, there are actually certain types of patients that have a higher risk of having dysautonomia as a co-morbid condition. This includes neurodegenerative disorders like multiple sclerosis and Parkinson’s Disease, but the ground I want to cover is something that affects people as an invisible illness.
Today we’re going to breakdown the relationship between chronic pain and the vagus nerve.
Fibromyalgia, Chronic Fatigue, and Dysautonomia
Fibromyalgia and chronic fatigue syndrome (aka myalgic encephalomyelitis) are 2 conditions that are frequently associated with each other. Estimates as high as 75% of of fibromyalgia patients report fatigue as a major symptom and 20% of chronic fatigue patients also report having widespread body pain [source].
What’s unique about these disorders is that they both show an unusually high amount of dysautonomia compared to the general population. A review in the Journal of Clinical Rheumatology showed that patients with fibromyalgia frequently show scores reflecting autonomic dysfunction along with non-pain symptoms like light-headedness on standing (orthostatic intolerance), digestive complaints, excess sweating, and fatigue.
It’s also been reported in the Journal of Internal Medicine that patients with chronic fatigue syndrome frequently have postural orthostatic tachycardia syndrome (POTS) enough to classify the POTS patients as a distinct subgroup of chronic fatigue.
So why is chronic pain associated with this breakdown of the autonomic nervous system?
What Happens in Vagus….
The nervous system is classified into different branches. For ease of understanding, you have one branch that controls all of your muscles like your biceps, triceps, and quads called the somatic nervous system. You also have another branch that controls your organ systems called the autonomic nervous system.
The autonomic nervous system is further divided into the sympathetic nervous system and the parasympathetic nervous system. The sympathetic system is the one that causes the things you feel when you get stressed out. Rapid heart beat, sweating, high blood pressure, along with increased blood flow to your muscles. It helps you prepare to fight or escape danger. The sympathetic system is primarily driven by a bundle of nerves called the sympathetic chain.
The parasympathetic does the opposite. It forces you to breathe slowly, digest, breathe slowly, and think about reproducing. The parasympathetic system is mainly driven by your vagus nerve.
The Vagus Nerve has a direct connection to most of your body’s internal organ systems
These systems generally work in opposition to each other to set the tone for how your body is going to operate.
The vagus nerve is an special and unique nerve that travels from your brainstem into the bulk of your internal organ systems. It gives the brain a direct line of communication with your organ systems because your body generally wants to spend most of it’s time being parasympathetic.
Why?
Because when your body is more parasympathetic it is able to breath easier, digest better, engage in sexual intercourse, sleep, and heal from injury.
The sympathetic system is designed to help you survive from an imminent threat, but your parasympathetic system is there to ensure that you can adequately heal and recover from that threat.
The more active the Vagus nerve is, the more likely your body is able to heal and recover. This isn’t just some pleasant billboard sticker either. Research has shown that increased parasympathetic activity is associated with higher survival heart disease and cancer. It’s also associated with improved recovery and decreased injury in athletes.
Most importantly for the patient in chronic pain, lower vagus nerve activity was associated with chronic pain compared to healthy controls. [Source] It’s also been shown that lower vagus activity can be associated with intensity of symptoms in patients with fibromyalgia. [Source]
Weak Vagus and Chronic Stress
Vagal activity is measured using something called heart rate variability (HRV). Many years ago, you could only measure heart rate variability from electrocardiograms (EKG) and measuring the distance between each heart beat. Today, there is no shortage of computer and even smart phone applications that have brought HRV to a wide audience.
In general terms, the higher your HRV is over time, the higher your vagal or parasympathetic activity. The lower your HRV is over time, the higher your stress or sympathetic activity.
If your body is in a chronically high state of stress, then it is going to:
- Decrease blood flow to your organs
- Increase exposure to your stress hormones (adrenaline and noradrenaline)
- Decrease your stores of serotonin (feel good neurotransmitter)
- Increase your blood sugar (diabetes)
- Increase your blood pressure
- Decrease your immune system
- Decrease tissue healing
Why? Because if your brain thinks that it is in danger from attack, then it does not care about healing and immune function. It is strictly concerned about getting you out of danger.
When you have low HRV and high sympathetic activity, your body is at a distinct disadvantage when it comes to healing and resilience. While low HRV isn’t necessarily the cause of heart disease, cancer, fibromyalgia, or chronic fatigue, but if you have a low HRV then your body’s ability to adapt and overcome these conditions is compromised.
I’ll put that in bold text because that’s an important distinction:
When you have low HRV and high sympathetic activity, your body is at a distinct disadvantage when it comes to healing and resilience. While low HRV isn’t necessarily the cause of heart disease, cancer, fibromyalgia, or chronic fatigue, but if you have a low HRV then your body’s ability to adapt and overcome these conditions is compromised.
Bringing Vagus Back
There was an interesting study published in 2014 that used strength exercise as a treatment for patients with fibromyalgia. The study showed that patients with Fibromyalgia had significant improvements in pain and quality of life through a regiment of strength training, but no significant changes in HRV. The study was surprising, because exercise is one of the best, easiest, and cheapest ways you can improve your HRV, but the biggest surprise was in the conclusion. The study concluded that strength training was an effective therapy for patients with fibromyalgia, which is absolutely true, but also said that changing the autonomic nervous system is not a goal worth achieving in patients with fibromyalgia.
Knowing what you know now about the autonomic nervous system, it seems like a rational and reasonable goal for any patient because improving the autonomic nervous system improves the health and survival of patients regardless of what condition they have.
The best part is that vagal tone can be improved using non-invasive methods that include cardiovascular exercise, resistance exercise, breathing exercise, mindfulness training, non-invasive vagal nerve stimulation, and yes even upper cervical chiropractic.
By taking the focus away from just addressing the pain, and making the focus of care on the autonomic nervous system, it gives us the ability to affect the person as a whole, instead of just addressing a symptom. By taking people away from their condition, and returning them to their bodies.